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Normal Form Games

Example (Two-Player Game)

c d

a 3, 3 1, 4
b 4, 1 2, 2

How is such a game played?
What does a normal form game consist of?

Notation

N = {1, 2}; (set of players)

A1 = {a, b}, A2 = {c , d}; (strategy sets)

A = A1 × A2 = {(a, c), (a, d), (b, c), (b, d)}; (strategy profiles)

u1, u2 : A → R; (payoff/utility functions)

u2(b, c) = 1.
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Normal Form Games

Definition

A normal form game Γ consists of a (finite) set N of at least two
players, and for each player i ∈ N:

A non-empty (finite) set of strategies Ai ; and

A payoff/utility function ui : A → R where A = ×i∈NAi is
the set of strategy profiles.
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Normal Form Games

Example (Three-Player Game)

e f

c 1, 1, 1 2, 2, 3
d 2, 3, 2 5, 4, 4

(a, , )

e f

c 3, 2, 2 4, 5, 4
d 4, 4, 5 6, 6, 6

(b, , )

N = {1, 2, 3};

A1 = {a, b}, A2 = {c , d}, A3 = {e, f };

A = {(a, c, e), (a, c, f ), (a, d, e), (a, d, f ), (b, c, e), (b, c, f ), (b, d, e), (b, d, f )};

u3(b, d , e) = 5.
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Player Permutations SN Acting on Strategy Profiles A

Suppose each player has the same strategy set.

Eg. A1 = A2 = A3 = {a, b}.

Let π ∈ SN be a permutation of the players.

Proposition

The player permutations act on the left of strategy profiles via

π(s1, ..., sn) = (sπ−1(1), ..., sπ−1(n)).

Example

Take π = (123) ∈ S3 and (s1, s2, s3) ∈ A.

π(s1, s2, s3) = (sπ−1(1), sπ−1(2), sπ−1(3)) = (s3, s1, s2)

Eg. π(a, b, a) = (a, a, b)
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Game Invariants

Definition (von Neumann)

π ∈ SN is an invariant of a game Γ if for each player i ∈ N and
strategy profile s ∈ A, ui(s) = uπ(i)(π(s)).

Invariants give us a notion of players being indifferent between
current positions and an alternative arrangement of positions.

Example

a b
a 1, 1, 1 2, 2, 3
b 2, 3, 2 5, 4, 4

(a, , )

a b
a 3, 2, 2 4, 5, 4
b 4, 4, 5 6, 6, 6

(b, , )

(123) and (23) are invariants of Γ;

Eg. Let π = (123), then u2(a, b, a) = u
π(2)(π(a, b, a)) = u3(a, a, b) = 3.

〈(123), (23)〉 = S3 (invariants of Γ).
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Label-Dependent Notions of Symmetry

Definition

Γ is:

fully symmetric (vNM) if it is invariant under SN ; and

standard symmetric (Stein?) if it is invariant under a
transitive subgroup of SN .

Example (Standard Symmetric Three-Player Game)

a b

a 1, 1, 1 2, 3, 4
b 3, 4, 2 5, 6, 7

(a, , )

a b

a 4, 2, 3 7, 5, 6
b 6, 7, 5 8, 8, 8

(b, , )

Γ is invariant under (123) and not invariant under (23);

〈(123)〉 = {e, (123), (132)} is a transitive subgroup of S3;

Note: Must have ui(a, a, a) = uj(a, a, a) for all i , j ∈ N etc.
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Are We There Yet?

Questions

What if players have different strategy sets?

Have we fully captured fairness? No

Example (Matching Pennies)

H T

H 1, −1 −1, 1
T −1, 1 1, −1
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Game Bijections

Definition (Nash)

A bijection from Γ to itself consists of a player permutation
π ∈ SN and for each player i ∈ N, a strategy set bijection
τi : Ai → Aπ(i).
Notation: Bij(Γ) denotes the game bijections from Γ to itself.

Example

g =
(

(123);
(

a b
d c

)

,
(

c d
e f

)

,
(

e f
a b

))

Note: Bij(Γ) ∼= (Sm Wr Sn).

Proposition

Game bijections act on the left of players and strategy profiles.

Example

g(2) = 3 and g(b, d , e) = (a, c , f )
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Game Bijections

Definition

Let G ≤ Bij(Γ). The stabiliser of player i ∈ N is the subgroup
Gi = {g ∈ G : g(i) = i} ≤ G .

Properties (Stein)

We say that G is:

player transitive if for each i , j ∈ N there exists g ∈ G such
that g(i) = j ;

player n-transitive if for each π ∈ SN there exists g ∈ G such
that g(i) = π(i) for all i ∈ N; and

strategy trivial if for each g ∈ Gi , g(si ) = si for all si ∈ Ai .

Theorem (Stein)

Strategy trivial subgroups act on strategy profiles equivalently to
permutations for some relabelling of the strategies.
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Automorphism Group

Definition (Nash)

An automorphism of Γ is an invariant bijection g ∈ Bij(Γ).

Ie. ui(s) = ug(i)(g(s)) for all i ∈ N, s ∈ A.

The automorphisms of Γ form a group which we denote as Aut(Γ).

Example (Matching Pennies)

H T

H 1, −1 −1, 1
T −1, 1 1, −1

Aut(Γ) = {
(

e;
(

H T
H T

)

,
(

H T
H T

))

,
(

e;
(

H T
T H

)

,
(

H T
T H

))

,
(

(12);
(

H T
H T

)

,
(

H T
T H

))

,
(

(12);
(

H T
T H

)

,
(

H T
H T

))

}

Aut(Γ) is player n-transitive, is not strategy trivial and contains no
proper transitive subgroups.

Nick Ham Classifications of Symmetric Normal Form Games



Label-Independent Notions of Symmetry

Corollary (Stein)

The following conditions are equivalent:

there exists standard symmetric Γ′ such that Γ′ ∼= Γ;

Aut(Γ) has a player transitive and strategy trivial subgroup.

Definition

Γ is:

symmetric if Aut(Γ) is player transitive; and

n-transitive if Aut(Γ) is player n-transitive.

fullystandard n-transitive

symmetric
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Parameterised Games

Definition

Let G ⊆ Bij(Γ). We construct the parameterised game Γ(G) of
G by assigning a parameter to each orbit in (N × A)/〈G〉.

Example

g =
(

(12);
(

a b
c d

)

,
(

c d
a b

))

requires that we have,

u1(a, c) = u2(a, c) = α u1(a, d) = u2(b, c) = γ

u1(b, c) = u2(a, d) = β u1(b, d) = u2(b, d) = δ

c d

a α, α γ, β

b β, γ δ, δ

Note: 〈G〉 can be a proper subgroup of Aut(Γ(G)).
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Parameterised Games

Example (n-Transitive Standard Non-Fully Symmetric Game)

e f

c α, α, α β, γ, δ
d γ, δ, β δ, γ, β

(a, , )

e f

c δ, β, γ β, δ, γ
d γ, β, δ α, α, α

(b, , )

G = {
(

(123);
(

a b
c d

)

,
(

c d
e f

)

,
(

e f
a b

))

,
(

(12);
(

a b
d c

)

,
(

c d
b a

)

,
(

e f
f e

))

}

〈G〉 is player n-transitive;

〈
(

(123);
(

a b
c d

)

,
(

c d
e f

)

,
(

e f
a b

))

〉 is transitive and strategy trivial;
(

(12);
(

a b
c d

)

,
(

c d
a b

)

,
(

e f
e f

))

/∈ Aut(Γ(G)).
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Parameterised Games

Example (Only-Transitive Non-Standard Symmetric Game)

g h

e α, α, β, β γ, δ, δ, γ

f δ, γ, γ, δ β, β, α, α

(a, c, , )

g h

e γ, δ, δ, γ α, α, β, β

f β, β, α, α δ, γ, γ, δ

(a, d , , )

g h

e δ, γ, γ, δ β, β, α, α

f α, α, β, β γ, δ, δ, γ

(b, c, , )

g h

e β, β, α, α δ, γ, γ, δ

f γ, δ, δ, γ α, α, β, β

(b, d , , )

G = {
(

(12) ◦ (34);
(

a b
d c

)

,
(

c d
a b

)

,
(

e f
h g

)

,
(

g h
e f

))

,
(

(13) ◦ (24);
(

a b
f e

)

,
(

c d
h g

)

,
(

e f
a b

)

,
(

g h
c d

))

,
(

(14) ◦ (23);
(

a b
h g

)

,
(

c d
f e

)

,
(

e f
c d

)

,
(

g h
a b

))

}

Nick Ham Classifications of Symmetric Normal Form Games



Partially Ordering Parameterised Games

Definition

Define ≤ on parameterised games as follows: Γ(G) ≤ Γ(G ′) when
given a set of parameters for Γ(G ′) there exists a set of parameters
for Γ(G) such that Γ(G) ∼= Γ(G ′).

Example (Symmetric 2-Player 2-Strategy Games up to Isomorphism)

α, α α, α

α, α α, α

α, β β, α

β, α α, β

α, α β, β

β, β α, α

α, α β, γ

γ, β δ, δ
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Partially Ordering Parameterised Games

Example (Symmetric 3-Player 2-Strategy Games up to Isomorphism)

α, α, α α, α, α

α, α, α α, α, α

α, α, α α, α, α

α, α, α α, α, α

α, α, α β, β, β

β, β, β α, α, α

β, β, β α, α, α

α, α, α β, β, β

α, α, α β, β, δ

β, δ, β δ, β, β

δ, β, β β, δ, β

β, β, δ α, α, α

α, α, α β, β, δ

β, δ, β σ, ρ, ρ

δ, β, β ρ, σ, ρ

ρ, ρ, σ ω, ω, ω

α, α, α β, γ, δ

γ, δ, β δ, γ, β

δ, β, γ β, δ, γ

γ, β, δ α, α, α

α, α, α β, γ, δ

γ, δ, β δ, β, γ

δ, β, γ γ, δ, β

β, γ, δ α, α, α

α, α, α β, γ, δ

γ, δ, β σ, ρ, τ

δ, β, γ τ, σ, ρ

ρ, τ, σ ω, ω, ω
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Questions?
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